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Objectives: The present study investigated the relationship between genomic variability and resistance of HIV-1
sequences in protease (PR) and reverse transcriptase (RT) regions of the pol gene. In addition, we analysed the
resistance among 651 individuals presenting antiretroviral virological failure, from 2009 to 2011, in the state of
S~ao Paulo, Brazil.

Methods: The genomic variability was quantified by using informational entropy methods and the relationship
between resistance and replicative fitness, as inferred by the residual viral load and CD4! T cell count.

Results: The number of antiretroviral schemes is related to the number of resistance mutations in the HIV-1
PR (a"0.2511, P"0.0003, R2"0.8672) and the RT (a"0.7892, P"0.0001, R2"0.9141). Increased informa-
tional entropy rate is related to lower levels of HIV-1 viral loads (a"#0.0121, P"0.0471, R2"0.7923), lower
levels of CD4! T cell counts (a"#0.0120, P"0.0335, R2"0.8221) and a higher number of antiretroviral
resistance-related mutations.

Conclusions: Less organized HIV genomes as inferred by higher levels of informational entropy relate to less
competent host immune systems, lower levels of HIV replication and HIV genetic evolution as a consequence of
antiretroviral resistance.

Introduction

The selective pressure exerted by any antiretroviral can select
mutants with several levels of viral resistance.1–5 During the evolu-
tionary process, the genome accumulates and stores information
about its environment. This information, already fixed in the
genome and transmitted to future generations, may be adaptive or
not, depending on the information context previously accumulated
in a particular environment (the environment is heterogeneous and
varies over time). The acquired genetic information is not easily lost
and co-evolves with the environment.6–8 Several studies indicate
that when changes in the environment occur, viruses increase the
information content in their genome, leading to a genetic evolution,
which can result in a decrease in replicative fitness.9–12

For some HIV genomic regions, such as protease (PR), selected
primary mutations are initially followed by a dramatic decrease in
viral fitness to allow viral replication in the presence of antiretrovi-
rals. Additional selected resistance mutations increase the level of
resistance, thereby restoring replicative fitness.13–15

PR is a structural protein and an enzyme responsible for the
selective cleavage of viral polyproteins—a crucial step during the

late phase of the viral cycle. PIs are designed based on the struc-
tural characteristics of the PR molecule. However, resistance muta-
tions induce disorders in the protein and inhibit long-term binding
to the cleavage site of this molecule.16–18 Reverse transcriptase
(RT) is an enzyme that reads the sequence of viral RNA nucleic
acids that enter the host cell and transcribes them into comple-
mentary DNA sequences.19,20

To comprehend the relationship between HIV-1 genetic diver-
sity and the presence of antiretroviral resistance mutations, the
genomic sequences encoding PR and RT of HIV-1 were analysed
among individuals presenting virological antiretroviral failure.
This study aims to quantify the informational entropy and corre-
late these values with laboratory markers related to HIV-1 dis-
ease progression (CD4! T cell count and viral load), the number
of ART schemes followed and the number/profile of resistance
related to resistance mutation. Entropy is a measure of the aver-
age uncertainty of symbols and is used mainly to quantify uncer-
tainty within a system; it is convenient in many aspects, and can,
for example, serve as a measure of variability in a discrete
variable.21–24
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Methods
This survey includes 651 sequences of PR and RT HIV-1 among individuals
presenting antiretroviral virological failure to NRTIs with NNRTIs and/or PIs.
The samples were evaluated as part of the Brazilian Network for HIV-1
Genotyping (RENAGENO).25 Genotypes were determined at the
Retrovirology Laboratory of the Federal University of S~ao Paulo in Brazil,
between 2009 and 2011. The sequences were aligned by using ClustalW26

and MatLab27 software, and subtyped on COMET28 and jpHMM;29 all
selected sequences belong to HIV-1 subtype B. The length of the PR
genome was 96 amino acids from residue 4 to 99 and the RT length was
210 amino acids from residue 38 to 247.

We analysed the relationship between the antiretroviral classes
received and the frequency of resistance-associated mutations. The
sequences were separated into groups according to the RT and PR regions
of the pol gene. To understand how the informational entropy rate can
affect replicative fitness, as inferred by the residual viral load and the CD4!
T cell count, an informational measure of diversity was employed to quan-
tify the number of amino acid variations in each position of the HIV-1 PR
and the RT, calculated from Equation (1). The entropy is a standard metric
to evaluate protein variability, and considers the number of possible amino
acids replaced and their frequency.30,31 Informational entropy H is com-
monly used to quantify the uncertainty of information about the amino
acid or protein at a given position and their fixation over time. The classical
Shannon formula for the mean entropy, or information content, per posi-
tion of amino acid sequence is written as:

HðXÞ ¼ �
X

pðxÞ ln ½pðxÞ� (1)

where p(x) is the probability (frequency) of the base (A, T, C, G) in the given
sequence, x is the total number of sequences compared and ln represents
the natural logarithm. A value of 0 for H indicates that all sequences are
identical, whereas a value of 1 indicates that in a given position all amino
acids differ from the others.30–34 The entropy analysis was performed using
MatLab software27 and the relation between groups was performed for
each genome position, by pairwise correlation, as well as based on the cor-
responding P value. We analysed the correlation between: (i) the antiretro-
viral class administered and the resistance-related mutations; (ii) the
number of ART schemes and the number of resistance mutations; and
(iii) the informational entropy and viral loads and CD4! T cell counts. In
these methods, entropy increase represents a decrease in the informa-
tional content of this protein. To analyse correlation between the entropy
and markers of disease progression, the sequences of the PR and RT of HIV-1
from patients under virological failure were sequentially divided into five
groups according to the intervals of viral load in log10 (0.4 log10 intervals),
where group 1 comprised individuals with viral loads ,3.7 log10 copies/mL
(n"96), group 2 comprised individuals with viral loads between 3.8 and
4.2 log10 copies/mL (n"94), group 3 comprised individuals with viral loads
between 4.3 and 4.7 log10 copies/mL (n"98), group 4 comprised individuals
with viral loads between 4.8 and 5.2 log10 copies/mL (n"94) and group 5
comprised individuals with viral loads .5.3 log10 copies/mL (n"92).
For these correlations, the CD4! T cell counts were sequentially divided into
group 1 comprising individuals with CD4! T cell counts ,100 cells/mm3

(n"93), group 2 comprising individuals with CD4! T cell counts ranging
from 101 to 265 cells/mm3 (n"96), group 3 comprising individuals with
CD4! T cell counts ranging from 266 to 372 cells/mm3 (n"98), group
4 comprising individuals with CD4! T cell counts ranging from 373 to
540 cells/mm3 (n"93) and group 5 comprising individuals with CD4! T cell
counts .540 cells/mm3 (n"94).

Data validation and graphs
The main objective was to quantify and understand the relationship
between the ART scheme used and the resistance mutation number.

The data were grouped according to previously used antiretroviral schemes
(one to nine), and the number of antiretroviral resistance mutations in PR
and RT. The number of resistance mutations was determined according to
the International Antiviral Society-USA (IAS-USA) mutation list.35 To ana-
lyse the relationship between resistance-related mutations and the num-
ber of antiretrovirals used, two distinct analyses were performed
evaluating the mutation number within and between groups. As the num-
ber of mutations increases, we calculated the relationship of the resistance
mutation number and the ART received using Pearson’s coefficient, accord-
ing to the R2 and the P value of each metric. To analyse the relationship
between the groups, linear correlation was performed in addition to the
R2 to verify the metric adherence. The statistical analysis was performed
using ExcelV

R

, MatLab and GraphPadPrism software.27,36 We considered a
P value ,0.05 to be statistically significant.

Results

Number of received ART schemes and the number of
resistance-related mutations

Figure 1 shows the relationship between the number of antiretrovi-
ral schemes and the number of resistance mutations in the PR and
RT regions of the HIV-1 pol gene. For patients who received more
than six antiretroviral schemes, the number of resistance muta-
tions increased compared with patients who received one antire-
troviral scheme, which was statistically significant for PR
(a"0.2511, P"0.0003, R2"0.8672) and RT (a"0.7892, P"0.0001,
R2"0.9141).

Relationship between the administered antiretroviral
class and the selected resistance-related mutations

The manner in which the frequency of the administered therapeu-
tic class can affect the relationship with the numbers of resistance
mutations was analysed. To assess this, a PR and RT HIV-1
sequence was employed with antiretroviral resistance-associated
mutations as previously defined. The number of antiretroviral
exposures is clearly related to the number of selected antiretroviral
resistance mutations (Figure 2). Among the individuals failing the
first treatment scheme with NRTI and NNRTI, the prevalence of
NRTI mutations was 26.7% and the prevalence of NNRTI muta-
tions was 9.7%. For the NRTI and PI combinations evaluated, the
prevalence of NRTI mutations was 6.9%, whereas the prevalence
of PI mutations was 2.6%. For NRTI, NNRTI and PI combination
schemes, the prevalence of mutations was 37.9%, 5.5% and
10.7%, respectively.

Correlation between informational entropy and the
laboratorial markers of HIV-1 disease progression

To understand how the informational entropy affects the inferred
replicative fitness and the residual immunity in HIV-1, the informa-
tional entropy and the relationships with the viral load and the
CD4! T cell count were analysed. The viral load mean and median
were 4.5 and 4.6 log10 copies/mL, respectively, with a range from
below detection limits to 6.1 log10 copies/mL, whereas the CD4! T
cell count mean and median were 383.9 and 319 cells/mm3,
respectively, ranging from 10 to 2318 cells/mm3. We observed a
correlation between the informational entropy and the viral loads
and the CD4! T cell counts. As seen in Figure 3(a and b), the

Antiretroviral resistance and HIV-1 entropy JAC

1055

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article-abstract/73/4/1054/4823429 by Biblioteca do C

onj. das Q
uím

icas-U
SP user on 08 July 2020

Deleted Text: &ndash; 
Deleted Text: , 
Deleted Text: and 
Deleted Text: ,
Deleted Text: &thinsp;
Deleted Text: by 
Deleted Text: n
Deleted Text: usual 
Deleted Text: which 
Deleted Text:  <bold></bold>
Deleted Text: with also
Deleted Text: ent
Deleted Text: &thinsp;
Deleted Text:  
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: received antiretrovirals
Deleted Text: were 
Deleted Text:  antiretrovirals
Deleted Text: Considering 
Deleted Text: that
Deleted Text: ,
Deleted Text: as well as
Deleted Text: <italic>&thinsp;</italic>
Deleted Text: &equals;
Deleted Text: &equals;
Deleted Text: s
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;


informational entropy correlates to the residual HIV replication, as
inferred by the viral loads among patients presenting virological
failure, and the residual host immunity, as reflected by the CD4! T
cell counts at the time of virological failure (a"#0.0121,
P" 0.0471, R2"0.7923 for viral loads; a"#0.0120, P"0.0335,
R2"0.8221 for CD4! T cell counts). In summary, when the
entropy is high, the viral load and the CD4! T cell count are low,
indicating a negative correlation among these quantitative
variables.

Discussion

In this study we sought to find the relationships between a number
of variables determined in HIV-infected individuals experiencing
ART failure. These variables included the resistance mutation pro-
files from the PR and RT regions of the pol gene according to the
data generated from Sanger sequencing, the number of previous
ARTs in which these individuals have failed, CD4! T cell counts and
HIV viral loads at the moment of virological failure; all of this
according to the informational entropy estimation. First of all, and
completely intuitively, we have been able to find a positive correla-
tion between the number of previous virological failures and the
number of resistance-related mutations. Some studies have
pointed out that the magnitude of previous antiretroviral exposure
has higher negative predictive values than the genotypic resist-
ance profile in the outcome of salvage therapy antiretroviral
schemes.37,38

It is well known that the results of genotypic resistance tests for
antiretroviral drugs most likely reflect the selective pressure
exerted by antiretrovirals used at that moment, and sometimes
do not reflect the mutations that have been selected in the past by
other antiretrovirals. In this context, genotypic resistance tests
present a high positive predictive value and a low negative predic-
tive value. One may argue, in contrast, that the high number of
antiretroviral schemes used in the past most likely reflects lack
of adherence and could be related to the lower prevalence of
resistance-related mutations.

We believe that our results, as well as results reported else-
where, provide an interesting and unique insight into the relation-
ship between informational entropy and the interplay of HIV and
human hosts. The variability patterns in genomic sequences
can be quantified by applying informational entropy methods, a
reliable tool for measuring probabilities and determining the
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information in sequences of aligned genomes.7,9–11,39 High infor-
mational entropy equates to disorganization of a given environ-
ment and to a high level of uncertainty. In this context, a very
organized and strong immune system from a host in the context
of HIV would be accompanied by lower levels of informational
entropy observed in genomic sequences from HIV at a given
moment. On the other hand, high informational entropy would
reflect a less adapted HIV in a given moment.

We were able to detect that among individuals on ART and
experiencing virological failure, the levels of HIV informational
entropy were inversely correlated with CD4! T cell counts, which,
as suggested above, suggests that more competent or stronger
immune systems from a host may be related to a more genetically
stable HIV. In agreement with the above, other studies demon-
strate that an increase in the informational entropy of the HIV

genome correlates with the efficacy of cytotoxic T-lymphocytes in
the recognition and affinity of HIV epitopes.40–42 Furthermore, we
were also able to find a correlation of higher HIV viral loads and
lower levels of HIV informational entropy. Higher HIV viral loads in
a given human host may reflect higher replication capacity of HIV,
which also may correlate with so-called viral fitness. Mutations in
PR and RT that cause resistance to antiretrovirals are often associ-
ated with the structure and function of HIV enzymes, leading to a
decrease in the viral fitness.43–47 In this context, we can also
speculate that a decrease in surrogate markers of HIV fitness, such
as viral loads, may be accompanied by a loss of genomic organiza-
tion. Indeed, it has been previously reported that individuals
recently infected with HIV, whose viral loads are higher prior to the
viral set point, harbour strains with lower informational entropy as
compared with individuals with established HIV infection.48

Significantly, we also describe here a relationship between
the number of resistance-related mutations and entropy, where a
lower number of mutations is accompanied by lower levels
of informational entropy. This finding also confirms that
selection of HIV resistant to antiretrovirals strongly decreases HIV
organization.

We recognize that HIV fitness has not been measured directly
in this study. We also recognize that the inclusion of a larger sam-
ple size in the current analysis would strengthen the inferences
about the relationship between HIV-1 fitness and information con-
tent. However, as discussed above, the results presented here,
taken together with results from other studies, suggest that origi-
nally transmitted HIV soon after HIV infection, when the host
immune system is still preserved, has a more organized genomic
structure as inferred by the lower levels of informational entropy.
As HIV evolves due to the presence of escape mutants and disease
progression or due to the selective pressure imposed by antiretro-
virals, a less organized genome will emerge, which in part con-
trasts to original Darwinian concepts.

Acknowledgements
We thank the Brazilian Network for HIV-1 Genotyping (RENAGENO),
sponsored by the Brazilian Ministry of Health, for providing access to
patient information.

Funding
This work was financially supported by Fundaç~ao de Amparo a Pesquisa
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